Automated flash chromatography systems have helped synthetic chemists speed up their synthetic research. One major advancement with these systems over the past 15 or so years has been the addition of photo-diode array ultraviolet (PDA-UV) UV detectors with which chemists can detect and fractionate using one, two, or multiple wavelengths. Enabling detection and fractionation with multiple wavelengths increases the likelihood that target and by-product compounds will be isolated with increased purity.
Does Detection Wavelength Influence Compound Purity and Recovery?
June 29, 2021 at 7:09 PM / by Bob Bickler
Does dry load media choice impact reversed-phase flash purification results?
June 15, 2021 at 4:07 PM / by Bob Bickler
Flash chromatography is a purification technique used by chemists to isolate their targeted compound from by-products and impurities. Because the reaction mixture (or natural product extract) may have its best solubility in a solvent that is chromatographically “stronger” than the mobile phase, liquid sample loading can be problematic causing early eluting and/or broad peaks with poor purity. In those cases, a technique called dry loading is frequently used.
Can dry load media choice impact normal-phase flash purification quality?
June 2, 2021 at 4:28 PM / by Bob Bickler
Flash chromatography is a purification technique used by chemists to isolate their targeted compound from by-products and impurities. Because the reaction mixture (or natural product extract) may have its best solubility in a solvent that is chromatographically “stronger” than the mobile phase, liquid sample loading can be problematic causing early-eluting, broad peaks which can reduce purification efficacy and product purity. In those cases, a technique called dry loading is a better alternative.