Biotage[®] Scaling Columns

Tools for Flash Chromatography Method Development

The Alternative to TLC

Flash Chromatography method development has historically been done using TLC plates. While this technique works in normal phase (silica, aminefunctionalized silica), differences in media properties between the TLC and flash column in reversed phase can provide different selectivity and not provide accurate method information. For reversed phase chromatography, TLC is quite limited and not very useful due to poor water wettability. An alternative approach is provided by scaling columns.

Commercially available reversed-phase HPLC columns can be used for flash chromatography method development, but differences in media chemistry (surface area, porosity, % carbon, etc.) can lead to altered selectivity compared to the flash column, Figure 1.

Because method development is important for optimal flash purification, Biotage created Scaling Columns. Scaling Columns are HPLC columns packed with the same media used in Biotage flash columns. The columns are designed for use on an HPLC for method development. Methods optimized using scaling columns are directly transferrable to flash chromatography using the same media and gradient, and eliminate selectivity differences, Figure 2.

Figure 1. Selectivity differences between a commercially available C18 HPLC column (top) and a Biotage" Sfär C18 column (bottom) are clearly evident which can present scale-up issues.

Figure 2. Method development using a Biotage^{*} scaling column (top) provides identical selectivity to the Biotage^{*} Sfär C18 column (bottom) which simplifies method transfer and scale-up.

Guidelines for Converting HPLC Methods to Flash

Method development with reversed-phase HPLC can be as easy as creating a gradient method on an HPLC system and duplicating it on a flash system. The best results are achieved when your HPLC column is packed with the same media as the flash column (Biotage[®] scaling columns). Using a scaling column for method development eliminates any separation quality differences in resolution/efficiency impact on the separation related to particle size and media chemistry differences.

Using an off-the-shelf, commercially available HPLC column will certainly point you in the right direction regarding the gradient method but due to brand to brand media selectivity differences, these results may not translate as well to the flash method as you might want.

Scaling Column-based Method Development

Column size (mm x mm)	4.6 x 250 (~2.5 grams)
Media	C18 or KP-NH
Particle size (µm)	C18: 25 KP-NH: 50
Column volume (mL)	2.35
Flow rate (mL/min)	1
Linear velocity (cm/min)	10.6
Detection	Diode array
Solvent A	C18: Water KP-NH: Hexane
Solvent B	C18: Methanol or acetonitrile KP-NH: Ethyl acetate
Equilibration	10% B for 7 min. (3 CV)
Gradient segment 1	10% B for 2.35 min. (1 CV)
Gradient segment 2	10% to 100% B in 23.5 min. (10 CV)
Gradient segment 3	100% B for 4.70 min. (2 CV)
Run time, gradient (min)	30.55

On the HPLC

Create a 3-segment scaling column linear gradient using the method suggested below based on column volumes. The scaling column's column volume (CV) is the void time (to) multiplied by the flow rate and is typically 2.35–2.6 mL.

Equilibration

10% B for 3 CV at 1 mL/min (~7 min.)

Segment 1

10% B for 1 CV at 1 mL/min (~2.35 min.)

Segment 2

10% B to 100% B in 10 CV at 1 mL/min (~23.5 min.)

Segment 3

100% B for 2 CV at 1 mL/min (~4.7 min.)

If your compounds elute too early, reduce the end % B to 50% and run the new gradient (do not change the run time or flow rates).

If your compounds elute late in the gradient, increase the start % B to 50% and run the new gradient (do not change the run time or flow rates).

Continue this process until you have an acceptable separation then transfer the method to your flash system using either a 6- or 12-gram C18 column (5- or 11-gram KP-NH), Figure 3.

Figure 3. A method developed on an HPLC using a C18 scaling column (top) and the flash chromatography results using the same method on a 12-gram Sfär C18 column (bottom). The separations are nearly identical.

Determining Loading Capacity

- Challenge the flash column's loading capacity until your target compound has achieved baseline resolution from its nearest neighbors, this will be your loading limit which can be scaled up to any size flash cartridge.
- 2. To scale-up the purification, choose the proper column size for the amount of material you need to purify, check Table 1.
- 3. Set your larger-scale flash column flow rate to match the small-scale column linear velocity using Table 2.

Column size	Scale factor	
6-gram	1	
12-gram	2	
30-gram	5	
60-gram	10	
120-gram	20	
240-gram	40	
400-gram	67	

Table 1. Scale up factors.

Column size (g)	Biotage [°] Sfär KP-NH flow rate (mL/min)	Biotage [°] Sfär C18 flow rate (mL/min)
6	10	15
12	13	23
30	22	42
60	41	74
120	41	70
240	89	156
400	102	159

Table 2. Flash column flow rates with equivalent linear velocities.

If you follow this process you should find success scaling up a method, Figure 4.

Figure 4. Direct flash chromatography scale-up from a 12-gram C18 column with a 140 mg load (top) to a 60-gram C18 column with a 700 mg load (bottom).

Ordering Information

Part number	Description	Quantity	
Scaling Columns			
S1UL-0401-93050	Biotage [®] HP-Sphere C-18 (30 µm) scaling column 4.6 x 250 mm	1	
S1N0-0909-93050	Biotage [®] KP-NH (50 μm) scaling column 4.6 x 250 mm	1	
Lab Scale Flash Columns			
FSUD-0401-0006	Biotage [®] Sfär C18 D Duo 100 Å 30 µm 6 g	2	
FSUD-0401-0012	Biotage [®] Sfär C18 D Duo 100 Å 30 µm 12 g	2	
FSUD-0401-0030	Biotage® Sfär C18 D Duo 100 Å 30 m 30 g	2	
FSUD-0401-0060	Biotage [®] Sfär C18 D Duo 100 Å 30 µm 60 g	2	
FSUD-0401-0120	Biotage [®] Sfär C18 D Duo 100 Å 30 µm 120 g	2	
FSUD-0401-0240	Biotage® Sfär C18 D Duo 100 Å 30 m 240 g	1	
FSUD-0401-0400	Biotage® Sfär C18 D Duo 100 Å 30 µm 400 g	1	

Part number	Description	Quantity
FSAD-0909-0005	Biotage® Sfär KP-Amino D Duo 50 µm 5 g	20
FSAD-0909-0011	Biotage® Sfär KP-Amino D Duo 50 µm 11 g	20
FSAD-0909-0028	Biotage® Sfär KP-Amino D Duo 50 µm 28 g	20
FSAD-0909-0055	Biotage® Sfär KP-Amino D Duo 50 µm 55 g	10
FSAD-0909-0110	Biotage® Sfär KP-Amino D Duo 50 µm 110 g	10
FSAD-0909-0220	Biotage® Sfär KP-Amino D Duo 50 µm 220 g	4
FSAD-0909-0380	Biotage [®] Sfär KP-Amino D Duo 50 µm 380 g	4
Scale-up Flash Columns		

FSUL-0401-0950	Biotage [®] SNAP Ultra C18 950 g	1
FSUL-0401-1850	Biotage® SNAP Ultra C18 1850 g	1

Your Complete Partner for Effective Chemistry

Biotage is a worldwide supplier of instruments and accessories designed to facilitate the work of scientists in life sciences. With our deep knowledge of the industry, academic contacts and in-house R&D teams, we can deliver the best solutions to your challenges. We take great pride in our flexibility and ability to meet our customer's individual needs. With strong foundations in analytical, organic, process, and biomolecule chemistry, we can offer the widest range of solutions available on the market.

EUROPE

Main Office: +46 18 565900 Toll Free: +800 18 565710 Fax: +46 18 591922 Order Tel: +46 18 565710 Order Fax: +46 18 565705 order@biotage.com Support Tel: +46 18 56 59 11 Support Fax: +46 18 56 57 11 eu-1-pointsupport@biotage.com

NORTH & LATIN AMERICA

Main Office: +1 704 654 4900 Toll Free: +1 800 446 4752 Fax: +1 704 654 4917 Order Tel: +1 704 654 4900 Order Fax: +1 434 296 8217 ordermailbox@biotage.com Support Tel: +1 800 446 4752 Outside US: +1 704 654 4900 us-1-pointsupport@biotage.com

JAPAN

Tel: +81 3 5627 3123 Fax: +81 3 5627 3121 jp_order@biotage.com jp-1-pointsupport@biotage.com

CHINA

Tel: +86 21 68162810 Fax: +86 21 68162829 cn_order@biotage.com cn-1-pointsupport@biotage.com

KORFA

Tel: +82 31 706 8500 Fax: +82 31 706 8510 korea_info@biotage.com kr-1-pointsupport@biotage.com

INDIA Tel: +91 22 4005 3712 india@biotage.com Distributors in other regions are listed on www.biotage.com

ø Biotage

Literature Number: PPS625

© 2020 Biotage. All rights reserved. No material may be reproduced or published without the written permission of Biotage. Information in this document is subject to change without notice and does not represent any commitment from Biotage. E&OE. A list of all trademarks owned by Biotage AB is available at www.biotage.com/legal. Other product and company names mentioned herein may be trademarks or registered trademarks and/or service marks of their respective owners, and are used only for explanation and to the owners' benefit, without intent to infringe.