Inspiring Productivity with Modern Flash Chromatography

Delivering more chemical targets with less...

Top 15 Pharma and Their R&D Efficiency

Investor Expectations Exceed Performance

	2008-2017 sales (B)*		2008-2017 R&D (B)*		R&D spend as a % of sales	NME+BLA^	Efficien	Efficiency (\$/approval)	
Pfizer	\$	477.096	\$	77.868	16%	7	\$	11.124	
Novartis	\$	433.854	\$	81.404	19%	13	\$	6.262	
Sanofi	\$	375.757	\$	62.376	17%	7	\$	8.911	
Roche	\$	369.386	\$	83.534	23%	2	\$	41.767	
Merck	\$	351.330	\$	75.614	22%	8	\$	9.452	
GSK	\$	330.438	\$	52.854	16%	11	\$	4.805	
Astra Zeneca	\$	272.597	\$	50.927	19%	8	\$	6.366	
181	\$	270.205	\$	56.436	21%	10	\$	5.644	
Lilly	\$	189.154	\$	45.441	24%	7	\$	6.492	
Amgen	\$	177.887	\$	34.462	19%	5	\$	6.892	
BMS	\$	165.531	\$	36.246	22%	7	\$	5.178	
Teva	\$	164.492	\$	16.403	10%	2	\$	8.202	
Gilead	\$	162.585	\$	22.361	14%	7	\$	3.194	
Bayer	\$	153.498	\$	24.645	16%	7	\$	3.521	
Takeda	\$	137.199	\$	33.040	24%	5	\$	6.608	

Investors expect a reasonable return on investment (ROI) provided by a high number of new molecular entities/biological license applications (NMEs/BLAs; new prescription drugs) approved and launched

^{*}Pharmaceutical Executive Magazine Top 50 Pharma, annual issues from 2009-2018

[^]FDA CDER data

Drug Discovery Process

Finding Hits, Developing Leads, Selecting Candidates

Drug Optimization Process

Goal: Minimize the time between idea generation and biological testing

Quality in Discovery Research

Balancing Quality with Speed and Cost

- Three conflicting goals
 - » High quality product
 - » Low development cost
 - » Fast development timeline
- » Quality
 - » #1 Priority, cannot be compromised
 - » NMEs must meet the required needs to treat a specified disease
 - Safe, efficacious, bioavailable, etc.
- >> Cost
 - » The cost required to discover a lead candidate is too high
 - Must be reduced
 - Speed
 - » The time it needed to discover new candidates is too long
 - Must be reduced

How can speed and cost improve without sacrificing quality?

© Biotage

Discovery Process Challenges

Synthesis, Purification - Difficult and Slow

Synthesis

- » Complex reaction chemistries
 - Multiple reactions
 - Many by-products
 - Increasingly polar molecules
 - Often long in duration
 - Multiple work-up steps
 - Challenging purification

» Purification

- » NME intermediates (via normal-phase flash column chromatography)
 - Methods not optimized, inefficient
 - Gradient and load based on guesswork or familiarization/experience with a compound class
 - Results in long or overly-complex gradients and re-runs
 - Column selection inappropriate
 - Too big, too small, incorrect media, or solvent choice
- » Final NME clean-up (via reversed-phase preparative HPLC)
 - Reaction mix sent to the prep or analytical lab
 - More waiting, expensive, risk to compound yield

Fixing Discovery Process Challenges

- Prep HPLC or flash chromatography?
 - » Synthetic chemists prefer flash
 - Quick processing speed
 - Fast to dry down organic solvents
 - Retain compound control, mitigates yield loss risk
- » Broad applicability with flash?
 - » Useful for both intermediate and final NME clean-up?
 - » Operate in both normal- and reversed-phase modes?
 - » Complex reaction mixtures?

Flash Chromatography Evolution

A Remarkable Journey

- 3 1901 Mikael Tswett performs first column chromatography separation
- » 1978 W. Clark Still publishes seminal paper on "flash" chromatography using granular 40-63 μm silica
- 3 1994 Biotage® Flash 75 and Flash 150 pre-packed columns and pressurized systems launched. These are the first commercially available flash purification systems and columns
- 3 1997 Argonaut Technologies launches first automated flash chromatography system (later acquired by Biotage) Biotage® FlashMaster
- 2000 Flash+® columns and Samplet® cartridges introduced by Biotage with direct scalability to Flash 75, Flash 150, and Flash 400 systems
- 2004 The Biotage® SP1, the first fully automated flash system with touchscreen interface and predictive TLC to linear gradient software launched
- 2007 Revolutionary Biotage® SNAP columns with removable cap for internal sample dry loading launched
- 2012 Biotage® SNAP Ultra columns with spherical, ~25 μm, 750 m²/g surface area silica launched increasing loading capacity up to 4x over conventional silica
- 2013 Biotage® SNAP Ultra C18 (~27 μm, spherical) launched providing very high performance reversedphase purification
- 2018 Biotage® Selekt system launched. A 2-channel system that speeds up flash purification with high speed column equilibration and automatic, high speed normal-phase to reversed-phase (and back) solvent switching
- 2018 High performance, high pressure Biotage[®] Sfär columns (spherical, 750 m²/g, 20 μm and 60 μm silica columns launched). Increase load capacity and reduce purification time and solvent use compared to conventional columns

Flash Chromatography Methods

Early Days

- Column/load determination
 - » The 1% rule
 - Choose a column that is 100 times larger than the amount of reaction mix to be purified
 - 100 mg requires a 10 gram column
 - 1 gram requires a 100 gram column
 - If the separation is poor, re-purify with a bigger column

Gradients

- » o-100% linear gradient (hexane/ethyl acetate)
- » o-10% linear gradient (DCM/MeOH)
- » At best, using TLC Rf data to create a more optimized linear /step gradient
 - ΔRf used as a load guideline

Flash Chromatography Methods Today

» Determine sample load based on ΔCV rather than ΔRf

$$- CV = 1/Rf$$

$$-\Delta CV = CV_2-CV_1$$

 $R_f A = .80$ $R_f B = .67$ $\Delta R_f = .13$ $\Delta CV = 0.24$

 $R_f A = .32$ $R_f B = .18$ $\Delta R_f = .14$ $\Delta CV = 2.43$

Flash Chromatography Methods

Today

Use either one or two TLC plates to create a gradient

» One plate

- Flash system uses % strong solvent to create linear gradient
- Uses Rf values (target compound and adjacent by-products) to determine CV and ΔCV
- ΔCV used to determine the correct column size for the amount of RxN mix to be purified

Flash Chromatography Methods

Today

Use one or two plates for gradient design

» Two plates

- Creates a step gradient
- Optimized for your target of interest
- Load amount doubled vs. linear gradient (in most cases)
- Run time and solvent consumption reduced upwards of 50% compared to a linear gradient

For more information on flash optimization listen to my webinar on this topic https://biotage.com/news/webinar-a-roadmap-to-successful-flash-chromatography

Flash Chromatography Trends

System Advancements

- » Smaller system footprints
 - » Bench/hood space at a premium
- >> Faster flow rates
 - » For larger columns/larger scale
 - » Faster equilibration to reduce purification time
- » Higher pressure tolerances
 - » Reversed-phase compatible
- Advanced detection options
 - » Diode array UV, UV-vis
 - » Evaporative light-scattering (ELSD)
 - » Mass (MS)
- Automated optimization
 - » TLC to gradient with sample load estimation
 - » Linear to step gradient conversion to minimize run time and solvent consumption, especially for scale-up

Flash Chromatography Trends

Column Advancements

- Advanced column technology
 - » Smaller particle, spherical shape, higher surface area silica
 - Higher loading capacity
 - Higher fraction purity
 - Allows use of smaller columns, shorter gradients
 - Saves purification time and reduces solvent consumption
 - » High performance reversed-phase columns
 - Small, spherical particles
 - Wide pore high performance reversed-phase columns for biomolecules
 - » Higher pressure tolerance column bodies
 - » Removable caps for internal RxN mix dry loading

Advancements in Flash Methodology

Yesterday vs. Today

- Standard flash chromatography-grade silica
 - » Granular
 - » 40-63 μm
 - $> 500 \text{ m}^2/\text{g}$
- » Higher loading capacity silica
 - » Spherical
 - » 60 μm
 - $> 750 \text{ m}^2/\text{g}$
 - » Better retention
 - » Sharper peaks
- » Highest performance silica
 - » Spherical
 - » 20 μm
 - $> 750 \text{ m}^2/\text{g}$
 - » 2x loading capacity of 10 gram, larger particle columns!

Flash Column Technology

An Efficiency Evolution

Parameter	10 g 40-63 μm	10 g 60 μm	5 g 20 μm
Column volume (mL)	15	15	9
Equilibration flow rate (mL/min)	36	150	150
Equilibration length (CV)	3	2	2
Equilibration volume (mL)	45	30	18
Equilibration time (min)	1.25	0.2	0.1
Run flow rate (mL/min)*	27	29	18
13 CV gradient run volume (mL)	195	195	117
13 CV gradient run time (min)	7.2	6.7	6.5
Total method volume (mL) (equil + gradient)	240	225	135
Total method time (min) (equil + gradient)	8.45	6.9	6.6
Total solvent savings (%)		6	44
Total time savings (%)		18	22

^{*}Flow rates used provided equal linear velocities to match mass-transfer kinetics

State-of-the-Art Columns Yield More

Same Column, Better Method, New Benefits

- Step gradient impact on productivity
 - » 100 mg load
 - » 5 gram, 20 μm column
- >> Linear gradient*
 - » Fast 6.6 minutes
 - » Frugal 135 mL
- » Step gradient*
 - » 42% faster 3.8 minutes
 - » 37% more frugal 85 mL

^{*} Includes equilibration volume and time

Achieving More with State-of-the-Art

Parameter	10 g 40-63 µm Linear	10 g 60 µm Linear	5 g 20 µm Linear	5 g 20 µm Step
Column volume (mL)	15	15	9	9
Equilibration flow rate (mL/min)	36	150	150	150
Equilibration length (CV)	3	2	2	2
Equilibration volume (mL)	45	30	18	18
Equilibration time (min)	1.25	0.2	0.1	0.1
Run flow rate (mL/min)*	27	29	18	18
Gadient run volume (mL)	195	195	117	67
Gradient run time (min)	7.2	7.3	6.5	3.7
Total method volume(mL) (equil + gradient)	240	225	135	85
Total method time (min) (equil + gradient)	8.45	6.9	6.6	3.8
Total solvent savings vs. 40-63 μm column (%)		6	44	65
Total time savings vs. 40-63 μm column (%)		18	22	55

Overcoming Limitations

» How are residual limitations of flash addressed?

- » Methods not optimized, inefficient
- » Guesswork or based on compound class familiarization
- » Poor column size/media choices/solvent choices, re-runs
- » Complex sample purification

1. Data from 1 TLC plate

- » Converts your TLC data into a linear gradient
- » Suggests a column size appropriate for separating your product from the crude reaction mixture.

2. Data from 2 TLC plates

- » Creates a step gradient from two TLC plates with better results
- » Resulting method optimized for speed and resolving power
 - Fastest purification (by up to 2x)
 - Expects a maximum sample load (Enabled by Biotage® Sfär columns)

The Biotage® Selekt flash system is smart - builds optimal methods

© Biotage 19

Overcoming Limitations

- System IDs the Biotage® Sfär column and collection rack intended for use
 - Preloads pertinent information, including the sample load range and optimal flow rate
 - Media choices are easily determined from the accessible column selection flowchart
- Modern diode array detection corrects baseline for mobile phase UV absorption
- Creates a method from a previous result
 - The system allows a past run performed on a familiar chemical series is recalled from the list of results and the method used therein
 - » No need to create a new method
- The Biotage® Selekt flash system addresses re-run and incorrect choice concerns with smart, built-in capabilities

Boosting Productivity

Modern Flash System - Speed Without Compromises or Worry

The Biotage® Selekt rapidly addresses time concerns

- » Rapid equilibration
 - Enables the user to load RxN mix within seconds, not minutes
- » 2- channel sequential system
 - Walk-up system
 - Multiple users
 - Different methods
 - NP and RP on separate channels for convenience
 - Intermediate purification on NP, final product purification RP
- » Rapidly switches between RP-NP to free the users time
 - Eliminates hassle/know-how necessary for NP-RP switching
 - Allows for routine use of high load C18s for polar compounds and separation of complex mixes

Can speed and cost improve without sacrificing quality? YES

© Biotage

Discovery Process Challenges Solved

- Synthetic chemists prefer flash
 - » It's quick chromatography
 - » Fast organic solvent evaporation
 - » You're in control
- Flash is broadly applicable
 - » Useful for both intermediate (NP) and final NME products (RP)
- Flash limitations are resolved (with application of modern flash)
 - Methods can be optimized and are efficient
 - Guesswork and waiting are nonissues
 - Column size/media/solvent choices are simple, re-runs can be avoided
- » Reduces time spent purifying
 - » Complex mixtures included
- » Reduces purification costs

© Biotage

Employing a Modern Flash System

Tips for Achieving Productivity Gains

- To avoid guesswork on flash column choice, method setup, reruns, while reducing costs, employ an intelligent flash system that helps you to avoid mistakes...
 - » Optimizes conditions that take the least time and use the least solvent
 - » Uses TLC data to generate both linear and step gradients
 - » Determines an appropriate column choice
 - » Auto-loads column parameters on column ID
 - » Recalls previous run method conditions
- To reduce waiting for flash system readiness, employ an intelligent flash system that rapidly flushes and equilibrates, requiring no additional user intervention
 - » Equilibrates columns in seconds
 - » Phase changes (NP/RP) between channels in seconds, automatically

Employing Modern Flash Columns

- 1. When using the same linear gradient method, employ ½-size columns packed with high surface area, small particle size silica to...
 - Reduce purification time by 20%
 - Reduce solvent consumption by 40%+
- 2. When using an optimized step gradient, employ ½-size columns packed with high surface area, small particle size silica to...
 - Reduce purification time by 55%+
 - Reduce solvent consumption by 64%+

Inspired Productivity for Discovery

Benefits of Modern Flash Chromatography

- Discovery chemists get more from less
 - » Run more syntheses per day with less effort due to faster purification
 - » Obtain pure chemical targets in less time
 - » Consume less solvent (less cost, less waste)
- So that chemists...
 - » Meet their NME production goals sooner
- Such that . . .
 - » NMEs move forward to biological testing
 - Drug discovery projects advance quicker!

Thank you

Bob Bickler bob.bickler@biotage.com selekt.biotage.com

