Disulfide-rich peptides

Optimizing and automating syntheses and regioselective formation of disulfide bonds

Elizabeth Denton, PhD 31 October 2018

Peptide therapeutics continues to grow Delivery and bioavailability still largest hurdles Biotage

- » Expecting approximately \$50 bil market for peptide therapeutics by 2025
 - » More than 60 approved therapeutics
 - » >150 in active clinical trials

Lau, J. L. and Dunn, M. K. BioOrg. and Med. Chem. 2018, 10, 2700-2707.

Structural stabilization improves biological activity

- » Head-to-tail cyclization reduces proteolytic degradation
- » Secondary structure stabilization improves binding affinity
- » Small macrocycles seem to be passively cell permeable
- » Disulfide rich peptides present loop regions for binding

Boehm, M. et al. *J. Med. Chem* **2017**, *60*, 9653-9663. Sarnowski, M. P. et al, *Bio. and Med. Chem.* **2018**, *26*, 1162-1166. Verdine, G. L. and Hilinski, G. J. *Drug Discov Today Tech.* **2012**, *9*, e1-e70. Cascales, L. and Craik, D. J. *Org. Biomol. Chem.* **2010**, *8*, 5035-5047.

Disulfide Rich peptides as structural scaffolds

Wang, C. and Craik, D. J. Nat. Chem. Bio. 2018, 14 417-427.

A Range of Strategies for Folding

Suite of orthogonally protected Cys

Biotage

Suite of orthogonally protected Cys

Biotage

Where to start? Managing instrumentation specifications

- >> Instruments perform tasks differently than you do manually
 - » Volume limitations
 - » Mixing mechanisms
 - » Scaling?
- >> What we need:
 - » Cysteine oxidation conditions
 - » Mmt removal conditions
 - » STmp removal conditions
 - » Acm removal conditions
 - » Model systems to evaluate efficacy
- » Concerns:
 - » Gentle oxidation to prevent disulfide shuffling
 - » Efficient protecting group removal

Optimizing disulfide bond formation

Reagents	Equivalents	Temperature	Time (min)	Percent completion
NH_3/H_2O_2	2/1.2	r.t.	30	50
NH_3/H_2O_2	4/2.4	r.t	30	50
NCS	2	r.t	15	100
NCS	4	r.t.	5	100
NCS	2	50 °C	5	100
NCS	1	50 °C	5	100

Postma, T. M. and Albericio, F. Org. Let. 2012, 15, 616-619.

Mmt removal efficiency varies with scale

	Scale	TFA in DCM	Volume	Time	Attempts
	(mmol)	+ 5% TIPS	(mL)	(min)	
_	0.025	2% TFA	1.5	20	2
	0.235	2% TFA	4.5	20	4
	0.4	2% TFA	9	30	6

Biotage

Fully automated oxytocin synthesis Incorporating Fmoc-Cys(Mmt)-OH and ^{C13,N15}Leu

Isotopically-labeled oxytocin prepared with fully automated synthesis and on-resin oxidation in 90% crude purity

Optimizing STmp removal

Reagent volume (mL)	Reaction time (min)	Reaction temperature	Iterations
4.5	5	r.t.	3
3	5	r.t.	3
1	5	r.t.	3
0.5	5	r.t.	3
0.25	5	r.t.	3

Fully automated oxytocin Incorporating Fmoc-Cys(STmp)-OH and optimized NCSmediated oxidation

Automated synthesis and on-resin disulfide bond formation in >83% crude purity

Optimizing Acm removal with concomitant Cys oxidation

Experiment	Time (min)	I ₂ equivalents (mmol)
1	60	15
2	45	15
3	30	15
4	60	10
5	60	5
6	60	2.5

All conditions yielded desired product as majority species

© Biotage

Increasing complexity Does the order of disulfide bond formation matter?

Pease, J. H. B. and Wemmer, D. E. *Biochemistry* **1988**, *27*, 8491-8498.

Further increasing complexity Synthesizing Linaclotide

- » Linaclotide
 - » FDA approved therapeutic
 - » 14 amino acids
 - » 3 disulfide bonds
 - » 43% Cys content
- Soal: automate synthesis and regioselective disulfide bond formation on-resin using orthogonal protecting groups

Further increasing complexity What order should the disulfide bonds be formed?

Further increasing complexity What order should the disulfide bonds be formed?

Further increasing complexity What order should the disulfide bonds be formed?

Gongora-Benitez, M et al. Biopolymers, 2011, 96, 69-80.

Vast structural diversity causes challenges for synthesis, production

Fang, G.-M. et al. Chin. Chem. Lett. 2018, 29, 1022-1042.

Biotage

Simplifying synthesis with smart software Directly visualize and specifically program everything

Se Se	lect Rack	fine	Se •	que	nce		•			Program Synthesi	is 🕨	
Branches	Amino Acids CCFY Select a variant from the list below	5 C	C	N	Ρ	Α	10 C ₂	т	G	Y	Resin	
	C: Fmoc-Cys(Trt)-OH				Clear			Impor	rt	Ex	port	
Selected Pale	C(2): Fmoc-Cys(Mmt)-OH			Selecte	d Amino	Acid—						
Sta	C(3): Fmoc-Cys(StBu)-OH			Cyst	teine	e, C ₁ ,	, Cys	5				
A	C(5): Fmoc-Cys(STMP)-OH			Fmo	c-C)	/s(A	cm)-	OH				
G					C)elete				Variants		
	6					Resulting Peptide Resin Functionality Molecular Weight: 17 g/mol						
м				Molecu	ılar Wei	ight: 15	63 1.4 g/i	mol	-	Add Prot	. Group	
				Produc	t Weigl	ht: 0.07	7 g					
S	Cancel		Switch labels to: Three Letter Code						ode			
Abort	Cycle in Progress (Time to Pause) (^{Time R}	Remair	ning	Vial Te	mperatu 31°	C	н	lelp	M	lenu	

Easily match orthogonally protected Cys pairs with the Variants palette

Simplifying synthesis with smart software Directly visualize and specifically program cyclizations

Readily assign and visualize disulfide bond connectivity

Simplifying synthesis with smart software Directly visualize and specifically program cyclizations

Simply assign order in which synthesis will occur

Biotage

Simplifying synthesis with smart software Directly visualize and specifically program cyclizations

Assign each reagent position wherever you want

Conclusions

- Successfully optimized automated orthogonal protecting group removal
- Successfully optimized on-resin disulfide bond chemistry with different reagents
- Successfully applied these optimized strategies to automate synthesis of complex, disulfide rich apamin and linaclotide peptides
- » Highlighted smart software simplicity for automating syntheses of complex peptides like these and potentially others

Questions?

